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Abstract 

 

This study develops a multi-factor framework where not only market risk is considered but also 
potential changes in the investment opportunity set. Although previous studies find no clear 
evidence about a positive and significant relation between return and risk, favourable evidence 
can be obtained if a non-linear relation is pursued. The positive and significant risk-return trade-
off is essentially observed during low volatility periods. However, this relationship is not 
obtained during periods of high volatility. Also, different patterns for the risk premium 
dynamics in low and high volatility periods are obtained both in prices of risk and market risk 
dynamics.  
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1. Introduction 

The relation between expected return and risk has motivated many studies in the financial 
literature. Most recent asset pricing models are based on this fundamental trade-off, so 
understanding the dynamics of this relation is a key issue in finance. One of the first studies 
establishing a theoretical relation between expected return and risk is the Sharpe (1964) and 
Lintner (1965) CAPM. These authors propose a positive linear relationship between the 
expected return of any asset and its covariance with the market portfolio. Later, Merton (1973) 
proposed an extension of this model, adding a second risk factor in the relationship that may 
improve the static CAPM. The market risk premium in the ICAPM is proportional to its 
conditional variance and the conditional covariance with the investment opportunity set 
(hedging component).  

The empirical literature on the ICAPM has tested the implications of this model in two 
dimensions. Papers such as Shanken (1990), Brennan et al. (2004) Ang et al. (2006), Lo and 
Wang (2006), and Petkova (2008) focus on the cross-sections of excess stock returns. Most of 
these works include additional factors other than market returns to provide an improved 
description of the dispersion in excess portfolio returns in the cross-section. Other related 
studies on the ICAPM with a focus on the time-series aggregate risk-return trade-off can be 
found in papers such as Scruggs (1998), Whitelaw (2000), Brandt and Kang (2004), Ghysels et 
al. (2005) and Guo et al (2009). These papers try to unmask a fundamental relationship between 
return and risk in financial data using different time-series analysis techniques. 

This study aims to shed light on the empirical validation of the risk-return trade-off following 
the time-series dimension of the second set of studies. There are many studies analyzing this 
relationship empirically, but their results are controversial. Campbell (1987), Glosten et al. 
(1993), Whitelaw (1994) and Brandt and Kang (2004) find a negative relation between these 
variables1, while other authors, such as Ghysels et al. (2005), Leon et al. (2007), Guo and 
Whitelaw (2006), Ludvigson and Ng (2007) and Lundblad (2007), find a positive trade-off. 
There are others studies, such as Baillie and De Gennaro (1990) and Campbell and Hentschel 
(1992), that find non-significant estimates for this risk-return trade-off.  

Several assumptions are necessary for the theoretical model to empirically analyze the 
aggregated risk-return trade-off in the time-series dimension. The most common is to consider 
constant prices of risk (Goyal and Santa-Clara 2003, Bali et al 2005). It is also necessary to 
assume specific dynamics for the sources of risk in the model. Finally, the empirical model is 
established in a discrete time economy instead of the continuous time economy used in the 
equilibrium model of the theoretical approach. Most of the empirical papers studying the risk-
return trade-off use one or more of these assumptions.  

Although a large body of literature focuses on this empirical validation, only a few studies use 
multi-factor models that consider a stochastic investment opportunity set (use of a hedge 
component). One of the most common simplifications when empirically analyzing this risk-
return relationship is the consideration of a constant set of investment opportunities (Glosten et 
al 1993, Lundblad 2007), or alternatively, independent and identically distributed returns. This 
assumption implies that the market risk premium only depends on its conditional variance and 
could be validated using single rather than multi-factor models.  

The great controversy in the empirical validation of the risk-return trade-off is due to the 
disappointing results obtained about the sign and significance of this relation. There is no 

                                                 
1 See Abel (1988) and Backus and Gregory (1992) for theoretical models that support a negative risk-return relation. 
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consensus about whether these results are due to: (1) wrong specifications of conditional 
volatility and the dynamics of risk factors (Guo and Neely (2008), Leon et al. (2007)); (2) 
misspecifications of the empirical models caused by the omission of the hedge component 
(Scruggs (1998)); (3) or both.  

The empirical technique most used in the literature to show this trade-off is the GARCH-M 
framework. This methodology assumes a linear relation between return and risk. There are other 
approaches to empirically analyzing the risk-return trade-off. However, most of them use 
different econometric techniques to validate a linear relationship between return and risk based 
on Merton’s ICAPM model. For instance, Ghysels et al. (2005) use the MIDAS regression, 
Ludvigson and Ng (2007) use factor analysis with macroeconomic variables and Bali and Engle 
(2010) use a temporal and cross-sectional analysis for a wide range of portfolios comprising the 
whole market.  

In this paper, we use another econometric approach based on the equilibrium model of 
Whitelaw (2000) in which we consider a non-linear relationship between return and risk. 
Generally, theoretical models do no restrict the risk-return relation to be linear or monotonic 
(Rossi and Timmerman (2010), Campbell and Cochrane (1999), Whitelaw (1994), Harvey 
(2001)). It is shown in this paper that the relationship between the expected return and volatility 
follows a non-linear rather than linear pattern, as stated in the ICAPM model.  

We use a Regime Switching GARCH (RS-GARCH) approach that allows us obtain favorable 
evidence for a positive and significant risk–return trade-off. We present a multi-factor model 
(assuming a stochastic set of investment opportunities) where both the prices and sources of risk 
are state-dependent. We consider non-linear relationships between return and risk following the 
papers of Mayfield (2004) and Whitelaw (2000). 

Using monthly excess market return data from 1953 to 2013, we find a positive and statistically 
significant relationship between return and risk during low-volatility states. The evidence for 
this relationship during high-volatility states is less clear and is not significant when we assume 
a linear risk-return trade-off. This result may give an answer to the risk-return puzzle. Given the 
evidence in this paper, we show that the consideration of different states in the market allows us 
to unmask this fundamental trade-off. The results show that there are periods in low-volatility 
states when a positive and significant relationship between return and risk exists, supporting the 
theoretical model. However, there are other periods in high-volatility states when this trade-off 
is not observed or is even negative. Thus, the assumption of a linear risk-return trade-off may 
fail to uncover this fundamental relationship because this trade-off depends on the state of the 
market.2  

The results in this paper also present differences in the patterns followed by both prices of risk 
and conditional volatilities in the different states. One interesting result is that the magnitude of 
the market price of risk is lower during high-volatility states. These results suggest a pro-
cyclical behavior in the investor risk-appetite, which depends on the volatility regime (high/low 
volatility). During low-volatility states, investors ask for a higher price for a ‘unit’ of risk than 
during high-volatility states. Additionally, the dynamics of conditional volatilities show greater 
persistence during high-volatility regimes with non-stationary dynamics during periods of 
financial turmoil. 

                                                 
2 To illustrate, the use of a timeframe with many periods corresponding to low-volatility states would result in a 
positive and significant risk-return trade-off. However, if, in the chosen timeframe, there were a high number of high-
volatility states, they would result in a negative and significant trade-off. Non-significant estimations for the relation 
between return and risk would likely be found in samples with a similar number of high and low-volatility periods. 
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Although the previous results seem to go against the spirit of theoretical models, the same 
results are obtained in several papers using alternative methodologies. Evidence for lower prices 
of risk during high-volatility periods can be found in Bliss and Panigirtzoglou (2004). These 
authors use a utility function to adjust the risk-neutral probability distribution function 
embedded in options. They are able to obtain measures of the risk aversion implied in options, 
and they find that the degree of relative risk aversion is lower during periods of high volatility. 
Regarding the state-dependent relationship between return and risk, Rossi and Timmerman 
(2010) use a flexible econometric approach that shows a non-monotonic relation between 
conditional volatility and expected market returns (at low-medium levels of volatility, a positive 
risk-return trade-off is observed, but this relation becomes inverted at high levels of volatility). 

Our goal in this paper is not to question the use of theoretical models in representing empirical 
features of the market. In fact, we want to highlight that the ICAPM is still alive and that the 
fundamental relationship between return and risk can be observed in the markets. However, this 
is only true for certain periods that correspond with low-volatility states. In contrast, in periods 
of instability and financial turmoil, the observed trade-off between return and risk follows other 
patterns.  

In this paper, the risk-return relation is tested using different proxies for the market portfolio 
(including the CRSP Value-Weighted NYSE-AMEX index and the SP500 index) and using 
datasets similar to those of previous studies (Scruggs, 1998 and Scruggs and Glabadanidis, 
2003). The robust evidence obtained in all cases supports our main conclusions and highlights 
the potential perils of making linear assumptions when modeling state-dependent markets.  

The rest of the paper is organized as follows. Section 2 provides a description of the data. 
Section 3 develops the empirical framework used in the paper. Section 4 presents the main 
empirical results, followed by robustness results in Section 5. Section 6 analyses the evidence 
after controlling for high volatility observations, and Section 7 concludes. 

2. Data Description 

This study uses 724 monthly excess market returns from the US market, including observations 
from March 1953 to June 2013. The application of our models is constructed around the 
availability of data on Government Bonds from the Federal Reserve Bank of St. Louis, which 
starts in 1953. This dataset is large and similar in size to other studies such as Scruggs (1998) or 
Scruggs and Glabadanidis (2003). Although there are slight differences in the parameter 
estimates using different data frequencies (monthly, weekly or daily), there is no particular 
reason why the conclusions in this study should be affected by the choice of data frequency 
(see, e.g., De Santis and Imhoroglu 1997).  

We compute excess market returns as the difference in the total returns of the CRSP Value-
Weighted NYSE-AMEX index minus the risk-free rate. Following Scruggs (1998) and 
Mayfield (2004), the yield of the 1-month T-bill is used as the proxy for the risk-free rate. The 
chosen proxy for the hedging component against changes in the investment opportunity set is 
the total returns for a set of constant-maturity US Government Bonds (similar to Bali and Engle 
(2009, 2010)): 5-, 10-, and 20-year Treasury bonds and an equally averaged portfolio containing 
these three bonds. The Centre for Research in Security Prices (CRSP) database is used to obtain 
the market portfolio return data. The Federal Reserve Bank of St. Louis provides the data 
corresponding to the yields on the risk-free rate and the yields on the proxies used as the 
intertemporal hedging component. To compute the total return on a constant maturity bond from 
the bond yield, we add two components: the promised coupon at the start of the year and the 
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price change due to interest rate changes (see Morningstar® Bond Return Calculation 
Methodology (2013) for details).  

Figure 1 plots the returns for the excess market returns, the risk-free rate and the excess returns 
for the alternative investment possibilities. Table 1 shows the main summary statistics for 
excess returns in the market portfolio and the intertemporal hedging alternatives and their 

correlations. 

[INSERT FIGURE 1] 

 [INSERT TABLE 1] 

The results show that any of the selected series could be considered a proxy reflecting the 
alternative investment set available to investors. We observe a very small correlation between 
any of the hedging component variables and the excess market returns. Nevertheless, due to the 
lack of consensus in the literature about the best proxy representing the alternative investment 
set (Scruggs and Glabadanidis 2003, Guo and Whitelaw (2006), Bali 2008), this study uses all 
of these different assets presenting different characteristics (in their terms and maturities), 
allowing us to bolster the robustness of our study. 

The excess monthly market returns have a mean of 0.567% and a standard deviation of 4.21%. 
Excess market returns present evidence of negative skewness and leptokurtosis. These results, 
together with the Jarque-Bera test, suggest that the excess market returns follow non-normal 
distributions with evidence of fat tails. The excess bond returns for the different alternatives 
chosen vary from 0.123% in the 5-year Government Bond to 0.172% in the 20-year 
Government bond and a standard deviation of 1.271% in the 5-year bond to 2.415% in the 20-
year bond (the longer the bond maturity, the larger the mean and standard deviation).  

Furthermore, all series exhibit conditional heteroskedasticity (serial autocorrelation in squared 
returns), and there is evidence of volatility clustering from the time-series plots. With these 
serial correlation patterns, the use of GARCH models to represent the dynamics of conditional 
second moments, which has large support in the previous literature, is understandable.3  

3. Empirical Methodology 

We now present the empirical models used in the study. One of the main building blocks of this 
paper is the assumption of state-dependent prices of risk and state-dependent conditional 
volatilities. This modeling implies a non-linear relationship between return and risk following 
the equilibrium model in Whitelaw (2000). We assume bivariate GARCH dynamics for 
conditional volatilities, more specifically, the BEKK model4 of Baba et al (1990). The main 
advantage of this model is that it guarantees that the covariance matrix will be positive definite 
by construction (quadratic form). State-independent multi-factor models that establish a linear 
relation between return and risk are presented in Section 3.1. In Section 3.2, state-dependent 
multi-factor models are introduced. These models establish a non-linear risk-return trade-off 

through a regime-switching process both in the risk premium and conditional volatilities. 

                                                 
3 Although there is also some serial autocorrelation in the series levels, we do not consider the inclusion of any 
structure in the mean equation because GARCH modeling eliminates any serial correlation in the standardized 
residuals. Standardized residual results are available on request. 
4 In unreported results we modelled the variance equation using the GJR asymmetric version of the BEKK model. As 
a further robustness check, we also tried the DCC GARCH model and its asymmetric version. The main conclusions 
of the paper hold. Results are available upon request. 
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3.1. State-independent multi-factor model 

We present a multi-factor model derived from Merton’s (1973) ICAPM model. The market risk 
premium in the theoretical Merton model is defined as:  

 ( ) 2

, , ,
WW WB

t W t W t WB t

W W

J W J
E R

J J
σ σ

− −
= +
   
   
   

                                           (1) 

where J is the utility function (subscripts representing partial derivatives), W is the wealth level, 

B is a variable that describes the state of investment opportunities in the economy, ( ),t W tE R is 

the expected excess return on aggregate wealth, 2
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are the prices of the risk factors. 

Using this model, we empirically test the aggregated (linear) risk-return trade-off in the time-
series dimension. The ‘general’ model allows time-varying conditional second moments, but the 
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constant over time (Scruggs and Glabadanidis 2003). Thus, given the theoretical framework and 
the assumptions taken, the empirical model relating excess market returns with the risk factors 
is stated as follows: 
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where rm,t and rb,t are the excess market returns on the market portfolio and the alternative 

investment set, respectively; ijλ for i=1,2 and j=0,1,2 are the parameters to be estimated, which 

represent the different prices of risk; and 2

,m tσ , 2

,b tσ , ,mb tσ   represent the conditional second 

moments (market variance, intertemporal hedging component variance and covariance between 
market portfolio and hedging component) or risk factors. A ‘restricted’ version of this model is 

also estimated, where the alternative investment set is time invariant ( 21 22 0λ λ= = ) (similar to 

Scruggs 1998). 

As explained above, it is necessary to make an assumption about the dynamics of the volatilities 
(risk factors) in order to empirically validate the theoretical ICAPM model. To analyze bivariate 
relationships, one of the most widely used models in the literature is the BEKK model of Baba 
et al. (1990). This model sets the following covariance equation:   
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                                    (3) 

where C is a lower triangular 2x2 matrix of constants, A and B are 2x2 diagonal matrices of 

parameters5, 1tε − is a Tx2 vector of innovations and 1tH − is the lagged covariance matrix. 

                                                 
5 Diagonal BEKK models are more parsimonious than full models and they perform well in representing the 
dynamics of variances and covariances (Bauwens et al 2006). 
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The model is estimated by the maximization of the Quasi-Maximum Likelihood function, 
assuming that the innovations follow a normal bivariate distribution: ( )~ 0,t tN Hε . 

( ) ( ) ( ) ( )
1

1 ' 12

1

1
ln , ; , ; 2 exp

2

T

t t t t t t t t
t

L f r where f r H Hθ θ θ π ε ε−− −
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where | Ht | represents the determinant of the covariance matrix, Ωt is the information set up to t 

and θ is the vector of unknown parameters.  

 

3.2. Regime-switching multi-factor model 

We now introduce a different multi-factor model where both the prices of risk and the 

conditional second moments are dependent on the state of the market. In this case, we propose 

two states6. The consideration of regime-switching in the empirical relation allows us obtain 

state-dependent estimations for the risk prices and conditional second moments. This implies a 

non-linear and state-dependent relation between expected return and risk following the general 

equilibrium model developed in Whitelaw (2000). Here, the study on the existence of a 

fundamental trade-off between return and risk is conditioned within each regime (defined by the 

levels of volatility in the market). This modeling gives us the chance to analyze a different and 

more complex shape of the risk-return relation beyond the simple linear one stated in the 

theoretical ICAPM model.  

With these assumptions, the mean equation specification in this model is defined as: 
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where rm,t,st and rb,t,st are state-dependent (on the latent variable st=1,2) excess market and 

hedging component returns, respectively; , tij sλ  for i=1,2 and j=0,1,2 are state-dependent 

parameters; 2

, , tm t sσ , 2

, , tb t sσ  and , , tmb t sσ are the state-dependent conditional second moments; and 

, , tm t sε  and , , tb t sε are the state-dependent innovations.  

It is assumed that the state-dependent conditional second moments follow GARCH bivariate 
dynamics (more specifically, a BEKK model). That is, there are as many covariance matrices as 
states.  

The state-dependent covariance matrices are: 
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where (for st=1,2) Ast and Bst are 2x2 diagonal matrices of parameters, and Cst are 2x2 lower 
triangular matrices of constants. 

                                                 
6 Previous studies considering three states (e.g., Sarno and Valente 2000) when modeling stock and futures time-
series show that the third state only reflects odd jumps in the return series. The explanatory power of this third state 
has been found to be low.  
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Shifts from one regime to another are governed by a hidden variable that follows a first-order 
Markov process with probability transition matrix P  (Hamilton 1989). 

 
( ) ( )

( ) ( )
1 1

1 1

Pr 1 1 Pr 1 2 (1 )

Pr 2 1 (1 ) Pr 2 2

t t t t

t t t t

s s p s s q
P

s s p s s q

− −

− −

 = = = = = = −
 =
 = = = − = = = 

       (7) 

where p and q are the probabilities of being in states 1 and 2 if in the previous period the 
process was in states 1 and 2, respectively. 

Due to this state-dependence and the recursive nature of GARCH models, the construction and 
estimation of the maximum likelihood function would be intractable unless independent 
estimates for innovations and covariances were obtained. To solve this problem, we use a 
recombinative method similar to that used in Gray (1996). This method allows us obtain state-
independent estimations for the covariance matrix and the innovations by weighting the state-
dependent covariance matrix and innovations with the ex-ante probability of being in each state. 

The ex-ante probabilities (the probabilities of being in each state in period t using the 
information set at t-1) are given by (8) and (9): 
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and k=1, 2 are the filtered probabilities (the probabilities of being in each state in period t with 
the information set up to t). 

Assuming state-dependent innovations following a normal bivariate distribution 

( ), ,~ 0,
t tt s t sN Hε , the vector of unknown parameters θ  is estimated by maximizing the 

following maximum-likelihood function: 

( ) ( ) ( ) ( ) ( )
2 1
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2

T
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∑ ∑
     (11)

 

where the state-dependent likelihood function is weighted by the ex-ante probability of being in 
each state. 

In this state-dependent model, we cannot make a direct interpretation of the magnitude of the 
risk-aversion coefficient for the representative investor. Unlike the single-regime multi-factor 
model presented here, the coefficient accompanying the market risk factor cannot be viewed as 
investor risk aversion but as the market price of risk (see Merton 1973, Whitelaw, 2000). 
However, we can make approximations for the risk aversion in terms of the sign of this price of 
risk and the relative comparisons of this price across states. 

Implementing these two types of models, linear and non-linear, allows us re-examine the 
patterns followed by the risk-return relation in the US market and to shed light on the empirical 
controversy about its sign and significance. Detailed estimates and discussions of these results 
are provided in the next section. 
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4.- Empirical Results 

We turn to the empirical results for the models proposed in the previous section. We estimate 
these models with the different proxies used for the intertemporal hedging component. Model I 
(both linear and state-dependent) use the 5-year T-bond as a proxy for the intertemporal hedging 
component. A similar approach is taken for model II with the 10-year T-bond, model III with 
the 20-year T-bond and model IV with the equally weighted bond portfolio. 

Section 4.1 shows and discusses the results for the linear models (without regime-switching), 
both in the general and restricted cases. Section 4.2 explains the results for the non-linear multi-
factor models (general and restricted), including regime switching, and their implications for 
trying to unmask the aggregated risk-return trade-off in the markets. 

 

4.1.- Multi-factor model estimations 

The estimated models are those introduced in section 3.1. We estimate a restricted version of the 
models where we assume constant risk premiums for the hedge component, i.e., λ21 = λ22 = 0. In 
the general version of the model, we estimate all parameters freely. The estimated parameters 
for the mean equation are presented in Table 2.A. 

[INSERT TABLE 2]
 

Most of the parameters in the mean equation for this multi-factor model are non-significant. The 
coefficients that reflect the market price of risk (λ11) are positive but non-significant in all cases 
considered. Similar results are obtained for the hedging component risk factor (λ12). This means 
our model fails to detect a significant relation between return and risk if it is assumed to be 
linear in the whole sample. This result is similar to other studies for the risk-return relation 
(Baillie and di Gennaro. 1990; Campbell and Hentschel, 1992), which also find a non-
significant relationship when using similar linear models.  

Table 2.B shows the parameter estimates for the variance equation. These parameters define the 
dynamics and patterns followed by the conditional second moments. The bivariate GARCH 
specification is a good fit and properly captures the conditional second moment dynamics7. 
Significance in the parameters representing shocks in volatility (a11, a22) and persistence of past 
variance (b11, b22) is observed for both risk factors (market risk and the investment opportunity 
set component). The persistence level in the two sources of risk—market risk (b11) and hedging 
component (b22)—is relatively high using multi-factor models, with values close to 1. This high 
persistence level suggests the presence of several regimes in the volatility process, in agreement 
with Lameroux and Lastrapes (1990). These authors state that persistence in variance may be 
overstated because of the existence, and failure to take account of, regime changes in the model. 

Thus, ignoring these regime shifts could lead to inefficiency in the volatility estimates and, 
consequently, in the risk factors. Regime-Switching (RS)-GARCH models allow us to both 
consider different states of the volatility process, as we explain in the next sub-section, and to 
overcome this limitation. More importantly, this type of model allows us to analyze more 
complex shapes of the empirical risk-return trade-off that cannot be detected by simpler linear 
models. 

 

 

                                                 
7 Diagnostics tests are not reported for brevity but are available on request. 
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4.2-  Regime-Switching multi-factor model estimation 

We show estimates for the state-dependent models presented in Section 3.2. These models 
exhibit state-dependent prices of risk and conditional second moments. Table 3 describes the 
estimates for the state-dependent mean equation in all cases considered. As we explain below in 
Figure 3, we can associate states 1 and 2 with low and high-volatility periods, respectively.  

[INSERT TABLE 3] 

Panel A of Table 3 shows the mean equation results for low-volatility periods (state 1). Positive 
and significant estimates for the market price of risk in low-volatility states (λ11,s=1) are obtained 
in all cases considered (for all proxies used as the intertemporal hedging component both in the 
general and restricted versions of the model). However, the magnitude of the estimated 
coefficients of these prices of risk depends on the model. Additionally, the results for the 
intercept are non-significant in most cases, following theoretical intuition. The original 
equilibrium framework does not include an intercept term, but empirical models include it to 
test for potential model misspecification. The non-significance of this term provides more 
support for the equilibrium model in these low-volatility states. A positive and significant 
influence of the covariance between the risk premium and the hedging component (λ12,s=1) on 
the market risk premium is also observed in some specifications. The evolution of this 
covariance does not exhibit a clear positive or negative influence on the total risk premium 
demanded (see Figure 2). The estimated product of the price of risk times the covariance 

between excess market return and the hedging component ( )12 , , 1tmb t sλ σ =  implies that the total risk 

premium required by the investor ( )2
11 , , 1 12 , , 1t tm t s mb t sλ σ λ σ= =+

 
will be slightly lower than the market 

risk premium when this covariance is negative. However, when the covariance is positive, the 
premium associated with the hedging component will lead to higher values of the total risk 
premium. 

[INSERT FIGURE 2] 

Panel B of Table 3 shows the mean equation results obtained for state 2. There is no clear 
pattern for this regime. There is no significant relation between the expected return and risk in 
high-volatility states (λ11,s=2) for most of the cases. However, in other cases, there is a negative 
risk-return trade-off at extremely high levels of volatility. This finding supports that of Rossi 
and Timmerman (2010). At low levels of conditional volatility, there is a positive trade-off 
between expected returns and risk, but this relationship becomes inverted at extremely high 
levels of volatility. 

Moreover, the price of risk coefficients in state 1 (corresponding to low-volatility states) are 
higher than those corresponding to state 2 (high-volatility states). Unlike the linear multi-factor 
models in section 4.1, we cannot directly associate the coefficients in this model with risk-
aversion coefficients (see Merton 1973). However, we can define the willingness of investors to 
bear risk in a given environment. This concept depends upon both the degree to which investors 
dislike uncertainty and the level of uncertainty. In this way, we can illustrate the difference 
between the risks perceived by the agents at a given point in time by risk aversion itself. Our 
estimated price of risk measures how much an investor would pay for one ‘unit of risk’ under a 
certain environment. Thus, if the price of risk is taken together with the quantity of risk inherent 
in the market, one is calculating the expected return to compensate investors for trading in the 
market, the well-known risk premium (we discuss this issue further in section 5.2).  
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Although we cannot use the parameters as risk aversion coefficients in our state-dependent 
multi-factor models, we can establish certain relationships with our findings. Prices of risk 
reflect the amount an investor would pay for a ‘unit of additional risk’. Intuition tells us that a 
risk-averse investor would ask for a higher price of risk for the same amount of risk than a risk-
loving investor. Therefore, we can draw a direct positive relation between the price of risk and 
risk aversion in our specification. If, then, we obtain higher price of risk estimates in our model, 
we can associate it with increases in risk aversion levels in the market. On the other hand, when 
we obtain lower price of risk, we can associate it with decreases in risk aversion levels in the 
market. 

The previous discussion suggests that there is a lower risk aversion level in high-volatility 
states. This finding is inconsistent with the spirit of linear theoretical models, which suggests 
that higher volatility should be compensated with higher returns. One potential explanation for 
this result could be the different risk aversion profiles for investors in each state (Bliss and 
Panigirtzoglou, 2004). Using options on the S&P100 and the S&P500, Bliss and Panigirtzoglou 
(2004) find that risk aversion is higher during periods of low volatility. These authors do not 
give an explanation for this result; they simply recommend developing theoretical models to 
capture these effects. Given our results, we would concur that during calm (low-volatility) 
periods, more risk-averse investors trade in markets. However, in high-volatility periods, only 
the less risk-averse investors remain in the market because they are the only investors interested 
in assuming such risk levels, thereby decreasing the price of risk demanded during these 
periods. This interpretation is in line with recent papers such as Salvador at el. (2014) and 
Ghysels et al (2013). These papers document that the Merton model holds over samples 
excluding financial crises, considering these periods as “flight-to-quality” regimes. The 
separation of the traditional risk-return relation from financial crises leads to fundamental 
changes in the relation.  

Furthermore, other related papers, such as Kim and Lee (2008), have reported similar evidence 
to ours in obtaining a significant risk-return trade-off during boom periods that is less clear 
during crisis periods. In this study, we do not define the states of the economy depending on the 
business cycle (boom/crisis), but we use volatility regimes. However, one would expect a link 
between volatility regimes and business cycles, which we will discuss in more detail later. Low-
volatility states would correspond to boom periods, while the less-common high-volatility states 
would be associated with crisis periods (Lundblad, 2007). The procyclical risk-aversion 
(investors show more risk-aversion during boom periods than during crisis periods) documented 
in Kim and Lee (2008) is replicated in our approach using volatility regimes, where investors 
show more risk-aversion during low-volatility periods than during high-volatility periods.  

Table 4 shows the estimations for the state-dependent variance equations. Again, significant 
estimates are obtained for the parameters accompanying the shock impact (a11, a22) and 
persistence (b11, b22) in the volatility formation in both risk factors. 

[INSERT TABLE 4] 

Furthermore, volatility formation depends on the regime considered in this framework. For low-
volatility regimes, a lower influence of the lagged variance (matrix B1) is observed, even 
compared to the non-switching case (with values lower than unity in all cases). Moreover, in 
these states, there is usually a higher impact of shocks (matrix A1) in volatility formation. In this 
case, the volatility observed at a period t in a low-volatility state is determined less by the 
variance observed in the previous period than by the shock occurring in period t.  
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However, there is a decrease of the shock influence on volatility formation in high-volatility 
regimes (a11,st=2, a22,st=2). There is also an increase in the volatility persistence in these high-
volatility states (b11,st=2, b22,st=2), with values higher than unity in most cases. Although volatility 
dynamics seem non-stationary during these highly volatile periods, the whole variance process 
remains stationary (Abramson and Cohen, 2007). What these results suggest is that the volatility 
process in the markets during periods of market turmoil could be explosive and may not 
necessarily revert to an equilibrium point. However, the whole process remains stationary 
because the volatility process will eventually return to the low-volatility state. 

Thus, linear GARCH models could lead to overestimates of volatility persistence in low-
volatility periods and underestimates of volatility persistence in high-volatility periods. This 
result can also affect the estimation of risk factors and, hence, the identification of a risk-return 
trade-off.

 
In addition, the non-linear multi-factor model allows us associate the different states that follow 
the volatility process with low- (state 1) and high-volatility (state 2) market periods. For 
instance, in the averaged portfolio case, the median of the estimated variances and covariances 

(scaled by 104) for state 1 are
 

2

, 1
ˆ

tm sσ = = 8.5023, 2

, 1
ˆ

tb sσ =  = 1.6089 and , 1
ˆ

tmb sσ =  = -0.0347, while the 

medians of the series in state 2 are 2

, 2
ˆ

tm sσ = = 19.8916, 2

, 2
ˆ

tb sσ =  = 2.6144 and , 2
ˆ

tmb sσ =  = -0.1215. 

These results (jointly with Figure 3) allow us to associate the states defined in the non-linear 
model with low- (state 1) and high-volatility states (state 2). 

Figure 3 shows the smooth probabilities8 of being in state 1 (low volatility) during the sample 
period jointly with recessionary periods, as defined by the National Bureau of Economic 
Research (NBER). 

[INSERT FIGURE 3] 

Although there are continuous changes in regime during the sample period, we can draw some 
inferences. Usually, recession periods documented by the NBER coincide with periods 
governed by high-volatility states, but this is not always the case. Thus, although we cannot 
establish a direct relationship between high volatility and business cycles, they appear to be 
positively related (Lustig and Venderhal, 2012). Despite these continuous changes in regime, 
low-volatility regimes are more prevalent during the sample period. The number of monthly 
periods where the volatility process is in a low-volatility state (probability of being in a low-
volatility state is higher than 0.5) is between 520 and 560 (depending on the proxy for the 
hedging component), corresponding to 71%-77% of the total sample. Thus, for approximately 
three-quarters of the sample, we do observe a positive and significant relationship between 
return and risk, but this relation is not observed a quarter of the time. However, if we make no 
distinction between regimes and we consider a linear relation across the whole sample period, 
this one-quarter of the time the relation is not observed blurs the evidence for the whole sample, 
leading to a conclusion of a non-significant trade-off. 

The results obtained regarding the significance of the risk-return trade-off in both types of 
multi-factor models lead us to believe that the lack of empirical evidence in previous studies 
could be due to the assumption of a linear risk-return trade-off. Non-linear assumptions lead to 
favorable evidence for the risk-return trade-off in low-volatility states, but we cannot obtain 

                                                 
8
 The smooth probability is defined as the probability of being in each state considering the entire information set. 
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favorable evidence when a linear trade-off is assumed. The consideration of the intertemporal 
component in the risk-return relation is of second-order relevance. We also obtain a significant 
impact of the intertemporal component in the risk-return relation, similar to Whitelaw (2000), 
but what truly unmasks the aggregated risk-return trade-off is the distinction across regimes. 

5.- Robustness tests 

5.1.- Alternative market portfolios 

Let us reassess our previous evidence by considering different alternatives to the market 
portfolio. In addition to the CRSP Value-Weighted NYSE-AMEX index, Bali and Engle (2010) 
use other popular US stock indices to reflect market returns. Given the sample period in this 
paper (March 1953-June 2013), we choose the SP500 index9. To obtain the excess market 
returns, we compute the monthly logarithmic returns of the index (obtained from Bloomberg), 
and we subtract the risk-free rate.  

 [INSERT TABLE 5] 

Panel A of Table 5 shows the results for the mean equation assuming a linear relationship 
between return and risk, where the equally weighted bond portfolio is considered the alternative 
investment set10. Similar to the results for the CRSP portfolio, the parameter identifying the 
relationship between market returns and risk is non-significant in all cases. The influence of the 
covariance between market returns and the alternative investment set is also non-significant. 
These results support the previous findings, where linear models are unable to identify the 
theoretical positive relationship between returns and risk. 

The results for the mean equation in the regime-switching case are displayed in panel B of Table 
5. Some findings here are worth mentioning. Again, we find a positive and significant 
relationship between return and risk during low-volatility states, supporting the favorable 
evidence obtained earlier for low-volatility periods. The effect of the covariance between the 
market portfolio and alternative investments tends to be negative for the SP500 index. For high-
volatility states, the relation between return and risk is also significant, but in the case of the 
SP500, the relation becomes negative, suggesting an inverted trade-off during these periods.   

This analysis again shows the importance of distinguishing between regimes and relaxing the 
linear assumption when providing evidence for a risk-return trade-off in financial markets. 
Regardless of which market portfolio is chosen, the empirical models are unable to detect a 
significant linear relationship between these two variables, but this trade-off does exist when a 
less restrictive non-linear framework is adopted. 

 

5.2.- Risk premium evolution 

As a further analysis, this section describes the evolution of the risk premium demanded by 
investors in the US, distinguishing between which proportions of the risk premium correspond 
to each risk factor, namely, the market risk and the hedging component. We compute the 
premium associated with market risk as the product of the price of risk by idiosyncratic risk 

                                                 
9 Other indexes are available and not used. For example, for the NYSE index, the sample period available is shorter 
(January 1966-June 2013) because it was first introduced in December 1965. Also, the price-weighting construction 
of the DJIA index results discourages our use of it as a proxy for the market portfolio.  
10 We also estimate the models using the other alternatives for the hedging component and find similar results. 
Results are available on request. 
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2

11 ,m tλ σ  for linear multi-factor models (and similarly for the hedging component premium). For 

the non-linear case, this risk premium is obtained using the state-dependent market risk 
premium weighted by the smooth probability of being in each state 

( ) 2

11, 1 , , 11 ;
t tt T s m t sP s θ λ σ= == Ω +  ( ) 2

11, 2 , , 22 ;
t tt T s m t sP s θ λ σ= == Ω (and similarly for the hedging 

component premium). The total risk premium is computed as the sum of the two factor 
premiums. 

For brevity, we only show results corresponding to the equally weighted bond portfolio as the 
alternative investment case.11 Figure 4.A describes the market risk premium for the different 
alternatives of the market portfolio. 

[INSERT FIGURE 4] 

The market risk premium series share similar patterns for the sample period for all portfolios 
considered. For instance, there is a common rise in the market risk premium that coincides with 
high-volatility periods. There are several peaks that also coincide with recessionary periods, 
such as December 1969-Novemeber 1970 and November 1973-March 1975. A peak is also 
observed following the Asian crisis in 1987 and the turbulent period between 1998 and 2002 
that ended with the bursting of the dot-com bubble. Finally, there is a common increase in the 
premium during the last financial crisis (2007-2009).  

The median of the monthly risk premium series shows that over the past 60 years, the risk 
premium in the US has remained at approximately 3.5% to 4% per annum,12 depending on the 
model and portfolio used. This estimate is very similar to other studies on US data (e.g., Bali 
(2008)). Furthermore, the total risk premium is essentially composed of the risk associated with 
the market. The percentage of the total risk premium corresponding to the hedging component is 
relatively small for both models.

 
To detect differences in the risk premium between the two proposed model types (linear and 
non-linear), Figure 4.B plots its evolution in each portfolio for both models13. A similar 
evolution of the total risk premium is observed in both the linear and non-linear models. It 
appears that during peaks of volatility, the non-linear models provide higher estimates of the 
premium; the rest of the time, they seem to provide lower estimates. These results suggest that 
during low-volatility periods, linear models tend to overestimate the premium, and during high-
volatility periods they tend to underestimate it.  

 

5.3.- Datasets used in previous papers 

This section repeats our analysis for the datasets used in two well-known papers analyzing the 
risk-return trade-off. The papers of Scruggs (1998) and Scruggs and Glabadanidis (2003) 
represent two of the best-known references for the use of multi-factor models in trying to 
provide evidence in the time-series for Merton’s theoretical model. Scruggs (1998) finds 
favorable evidence for a partial relation between the market risk premium and conditional 
market variance. He uses a bivariate model comprising the CRSP Value-Weighted NYSE-

                                                 
11

 The dynamics of the evolution of the risk premium in the rest of the cases are very similar. Results are available on 
request. 
12 The descriptive statistics for the risk premiums are not shown but are available from the authors upon request. 
13 For brevity, only the figures for the average portfolio as an alternative investment in the general model are shown. 
The dynamics of the differences in the risk premium evolution in the rest of the cases are very similar. Results are 
available on request. 
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AMEX portfolio as the proxy for market returns (rm,t ) and long-term government bond returns 
(more specifically, the Ibboston Associates long-term U.S. Treasury bond total return index) as 
the hedging component factor (rb,t ) in a sample period from March 1950 to December 1994. A 
few years later, Scruggs and Glabadanidis (2003) tested whether the intertemporal variation in 
stock and bond premia can be explained by time-varying covariances with priced risk factors. 
Considering again the CRSP Value-Weighted NYSE-AMEX portfolio as market returns (rm,t ) 
and the Ibboston Associates long-term U.S. Treasury bond total return index as the second 
factor (rb,t ) in the models for January 1953 to December 1997, they use several bivariate models 
that relax the assumption of constant correlation in Scruggs (1998). However, they were unable 
to obtain favorable evidence for these types of models. 

[INSERT TABLE 6] 

Table 6 shows the results obtained for our empirical specifications using the same datasets as 
those in Scruggs (1998) and Scruggs and Glabadanidis (2003). If we analyze the results when 
using linear models (panel A), they are very similar to those of the datasets used in previous 
sections. We fail to identify a significant relation among these variables (even the covariances 
present no significance in any case). 

Again, the evidence obtained using non-linear models is more favorable. We do obtain positive 
and significant estimations during low-volatility periods (panel B) in all cases as well as a 
robust negative effect of the covariance between market and bond returns for all cases. This 
implies that the market risk premia are positively related with the market variance but are 
reduced by the covariance between market and bond returns.   

The results for high-volatility periods are also robust in all cases. Similar to some of the earlier 
specifications, it appears that the risk-return trade-off becomes inverted for high levels of 
volatility. In all cases, we obtain a highly negative and significant parameter. Additionally, 
going against the results for low-volatility states, the impact of the covariance in the market risk 
premium during periods of high volatility is positive. This implies that the market risk premia 
are negatively related to the market variance but are increased by the covariance between 
market and bond returns. 

These results add further evidence regarding the perils of making linear assumptions when 
analyzing the risk-return trade-off in financial markets. The empirical evidence appears to 
support the theoretical model during low-volatility states, but the results do not hold for high 
levels of volatility.  

6.- Do high-volatility regimes distort evidence on the risk-return trade-off? 

Thus far, we have reported commonality in the results regardless of the dataset used or the 
model specification applied. We detect a significant positive risk-return trade-off under non-
linear specifications during low-volatility states that we cannot find during high-volatility states 
or when we assume a simpler linear model. Thus, we suspect that during low-volatility periods, 
this trade-off does exist, but during high-volatility periods this relation is different, and 
aggregating these two different periods may distort the evidence in the entire sample. In this last 
section, we check whether we are able to detect a linear relationship between return and risk if 
we control for the observations associated with the high-volatility regimes.  

We use different alternatives for the market portfolio (CRSP and SP500) and the equally 
weighted bond portfolio for the alternative investment set. We also use the datasets as in 
Scruggs (1998) and Scruggs and Glabadanidis (2003). From the original single-regime models 
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in equation (2), we add two dummies to the equation of excess market returns (in levels and 
multiplying the market variance). These new dummies take the value 1 when the market is in 
periods of high volatility14 and the value 0 the rest of the time. We discriminate between high 
and low volatility observations given the filtered probabilities estimated in sections 4.2 and 5.3. 

The observations corresponding to a high-volatility state represent only a small percentage of 
the whole sample: only approximately 20% of the observations in the Scruggs (1998) and 
Scruggs and Glabadanidis (2003) datasets and even less (approximately 15% of observations) in 
the CRSP and SP500 portfolios. 

Once we have the new dummies controlling for observations “within a high-volatility state,” we 
run our proposed linear models described in Equations 2-4 (plus the two dummies) to test 
whether the existence of unusual observations corresponding to high-volatility states could have 
blurred previous evidence. 

[INSERT TABLE 7] 

Table 7 shows the results for this analysis. We can see that in all cases (CRSP, SP500, Scruggs 
(1998) and Scruggs and Glabadanidis (2003)), the non-significant estimations for the risk-return 
trade-off obtained previously using linear models turn out to be significant after controlling for 
the observations in high-volatility states. This suggests that the relationship between return and 
risk does exist during low-volatility states. However, the existence of periods of turmoil and 
financial instability may have masked this relationship in the time series dimension. Our results 
suggest a more complex relationship between risk and return than the linear relationship 
specified in the theoretical model. The negative and significant values for the dummy variables 
also reflect the inverted risk-return trade-off during high-volatility periods obtained in previous 
sections. 

We also find non-significant estimates for the hedge component variable in the CRSP and 
SP500 indices when we control for high volatility observations. However, when we use datasets 
similar to those of Scruggs (1998) and Scruggs and Glabadanidis (2003), there is a negative and 
significant influence of the covariance on the market risk premium. 

Thus, distinguishing among different patterns followed by risk premia and variances during 
periods of financial instability may help explain the puzzle of the risk-return trade-off. The 
evidence obtained supporting this claim in the US market is favorable for most cases. We 
suggest that this instability of the risk-return trade-off during high-volatility states has been a 
cause of the controversial results reported in previous studies.  

7.- Conclusion 

This paper empirically analyzes the risk-return trade-off for the US market under a multifactor 
framework using several types of US government bonds as alternative investment sets. We 
propose two different empirical models considering bivariate GARCH specifications that allow 
us identify linear and non-linear relationships between return and risk. The non-linear 
specification is obtained using a Regime-Switching model that allows us associate the different 
states with volatility regimes (low and high volatility). 

Our main result shows that only a positive and significant risk-return trade-off is obtained in the 
non-linear case and only in the states governed by low volatility. However, we cannot find 
favorable evidence for the risk-return relation in the linear framework, and it is mixed during 
                                                 
14 To be conservative, we only use high volatility observations that present a probability above 75%.  
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high-volatility states. Our results also support the findings of previous papers that document 
pro-cyclical behavior in the risk appetite of financial markets, i.e., during low-volatility states 
the market price of risk is higher than during high-volatility periods. The existence of periods 
where a positive and significant risk-return trade-off is not observed could lead to non-
significant estimates for this relation for the entire sample. This result highlights the perils of 
using linear assumptions when analyzing the aggregated trade-off between return and risk and 
the inability of linear empirical models to capture a significant risk-return relationship, which 
exists most of the time. 
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Table 1 
Summary statistics for excess market returns and intertemporal hedging proxies 

The table shows summary statistics and correlations of excess monthly returns for the market portfolio 
(rm,t) and the alternative investment sets (rb,t). The proxy for the market portfolio is the Center for 
Research in Security Prices (CRSP) value-weighted portfolio and the risk-free rate is the yield on the one-
month Treasury bill. The proxies for the alternative opportunity set are the total returns (computed as 
Morningstar ®) for the 5, 10 and 20 year constant maturity US Government Bonds and an equally 
weighted portfolio using these 3 bonds. Panel A shows the mean, standard deviation, skewness, kurtosis 
for each series. It also shows the Jarque-Bera test for normality and the Ljung-Box test for serial 
autocorrelation in levels and squares using 6 lags (t-stats in parenthesis). *** , **  and * represent 
significance at 1%, 5% and 10% levels. The mean and standard deviation of each monthly series are 
expressed in percentage points. Panel B shows the correlations between the excess market returns and the 
different choices for the alternative investment set. The sample period includes observations from 1953 to 
2013 and the returns are expressed as decimals. 
 

Panel A.- Summary statistics  
 (rm,t) (rb,t) 

 
Excess 
market 
return  

Excess return 
5-year T-bond 

Excess return 
10-year T-

bond 

Excess 
return 

20-year T-
bond 

Excess return 
equally-
weighted 
portfolio 

Mean (x100) 0.5672 0.1231 0.1495 0.1725 0.1492 
Std. Deviation 

(x100) 
4.2130 1.2713 1.8409 2.4154 1.5781 

Skewness -0.4956 0.3615 0.4914 0.5904 0.6242 

Kurtosis 5.0823 7.3289 6.8442 7.8485 6.9770 

J-B 160.0143*** 
(0.0000) 

579.4733*** 
(0.0000) 

473.6377*** 
(0.0000) 

749.1486*** 
(0.0000) 

522.6930*** 
(0.0000) 

L-B (6) 26.5058 
(0.1492) 

134.5243*** 
(0.0000) 

104.8266*** 
(0.0000) 

85.0971*** 
(0.0000) 

195.9049*** 
(0.0000) 

L-B2 (6) 53.7536*** 

(0.0000) 
433.4219*** 

(0.0000) 
180.9236*** 

(0.0000) 
85.8342*** 

(0.0000) 
170.9475*** 

(0.0000) 

Panel B.- Correlations  

 
Excess 
market 
return 

Excess return 
5-year T-bond 

Excess return 
10-year T-

bond 

Excess 
return 

20-year T-
bond 

Excess return 
equally-
weighted 
portfolio 

Excess market 
return 

1 -0.0660 -0.0606 -0.0390 -0.0013 
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Table 2.  
Panel A Mean equation estimates for multi-factor models 

The table shows the estimates of the risk-return trade-off using the independent multi-factor model in 
Equation 2. Two versions of the model are estimated: R refers to the Restricted version of the model in 
Equation 2 where λ21 = λ22 = 0 (Scruggs, 1998) and G to the General model where all parameters are 
freely estimated.  Excess monthly returns are used in the estimation of the model. The proxy for the 
excess market returns (rm,t) is the CRSP Value-Weighted portfolio minus the risk-free rate. Each column 
illustrates the results from the estimation of the model using one of the choices for the (rb,t) alternative 
investment set. In model I the excess returns of the 5-year US Government Bond is used. In model II the 
excess returns of the 10-year US Government Bond is used. In model III the excess returns of the 20-year 
US Government Bond is used. In model IV the excess returns of an equally weighted portfolio containing 
these three bonds is used. The coefficients and corresponding t-statistics (in parenthesis) are shown for 
the full sample period (March 1953-June 2013). The t-statistics are computed using Bollerslev-
Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% and 10% levels).  
 
 

 

2
, 10 11 , 12 , ,

2
, 20 21 , 22 , ,

m t m t mb t m t

b t bm t b t b t

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

 Model I Model II Model III Model IV 

10λ
 

R -0.0034 
(-0.5245) 

-0.0083 
(-0.8738) 

-0.0074 
(-0.8692) 

-0.0068 
(-0.8487) 

G -0.0020 
(-0.3255)

 

-0.0093 
(-0.8325) 

-0.0113 
(-0.7580) 

-0.0100 
(-0.9397) 

11λ
 

R 5.8829 
(1.5985) 

8.5568 
(1.5533) 

7.7873 
(1.5883) 

7.5177 
(1.6205) 

G 5.1010 
(1.4604) 

9.1769 
(1.4207) 

11.4738 
(1.1258) 

9.4884 
(1.5454) 

12λ
 

R -0.0992 
(-0.0088)

 

-0.4122 
(-0.0510)

 

0.2648 
(0.0447)

 

-0.1917 
(-0.0238)

 
G -0.0819 

(-0.0071)
 

-0.6355 
(-0.0761)

 

1.9528 
(0.3155)

 

0.7758 
(0.0966)

 

20λ
 

R 3.38e-04 
(1.1448) 

3.38e-04 
(0.9070)

 

1.81 e-04 
(0.3565)

 

2.28 e-04 
(0.6847)

 
G -2.19 e-04 

(-0.6094)
 

-3.54e-04 
-(0.0778)

 

-2.06 e-04 
-(0.0227)

 

-6.71 e-04 
-(0.1632)

 
21λ

   
G -1.3529 

(-0.3375)
 

1.7560 
(0.3930)

 

9.8629* 
(1.9512) 

7.5466* 
(1.7889)

 
22λ

   
G 6.7558** 

(2.4735)
 

3.9220** 
(2.1542)

 

3.0509** 
(2.3168)

 

5.4008*** 
(2.8771)

  
. 
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Panel B Variance equation estimates for multi-factor models 
The table shows the estimates of the variance equation of the single-regime multi-factor model in 

Equation 3. These variance equations come from two different versions of the main model presented in 
equation 2: R refers to the Restricted version of the model in Equation 2 where λ21 = λ22 = 0 (Scruggs, 
1998) and G to the General model where all parameters are freely estimated. The proxy for the excess 
market returns (rm,t) is the CRSP Value-Weighted portfolio minus the risk-free rate. Each column 
illustrates the results from the estimation of the model using one of the choices for the (rb,t) alternative 
investment set. In model I the excess returns of the 5-year US Government Bond is used.  In model II the 
excess returns of the 10-year US Government Bond is used. In model III the excess returns of the 20-year 
US Government Bond is used. In model IV the excess returns of an equally weighted portfolio containing 
these three bonds is used. Excess monthly returns are used in the estimation of the model. The 
coefficients and corresponding t-statistics (in parenthesis) are shown for the full sample period (March 
1953-June 2013). The t-statistics are computed using Bollerslev-Wooldridge standard errors ( *** , **  and *  
represents statistical significance at 1%, 5% and 10% levels). 

 
 

 

'2

, , 11 11

2

, , 12 22 12 22

' '

'11 21 11 21 11 21 11 21
1 1 1

12 22 12 22 12 22 12 22

0 0m t mb t

t

mb t b t

t t t

c c
H

c c c c

a a a a b b b b
H

a a a a b b b b

σ σ
σ σ

ε ε− − −

= = +

+

    
    

   

       
       
       

 

 Model I Model II Model III Model IV 

11c
 

R -0.0120*** 
(-7.6547)

 

-0.0121*** 
(-7.4074)

 

-0.0118*** 
(-7.3043)

 

-0.0112*** 
(-7.5434)

 
G -0.0121*** 

(-7.6443)
 

-0.0121*** 
(-6.8438)

 

-0.0122*** 
(-4.8472)

 

-0.0113*** 
(-6.8261)

 

12c
 

R 2.71e-04 
(1.4859)

 

4.48 e-04* 
(1.8313)

 

3.21 e-04 
(1.0025)

 

2.75 e -04 
(1.2861)

 
G 2.46 e -04 

(1.3581)
 

4.46 e-04* 
(1.8074)

 

3.64 e-04* 
(1.0732)

 

2.95 e -04 
(1.3597)

 

22c
 

R 8.41e-04** 
(2.2754)

 

-5.94 e-04 
(-1.6341)

 

8.34 e-04 
(1.5543)

 

-5.05 e-04 
(-1.5533)

 
G 8.71e-04** 

(2.4581)
 

-5.69 e-04 
(-1.4379)

 

8.14 e-04 
(1.4955)

 

4.90 e-04 
(-1.4334) 

11a
 

R 0.2626*** 
(6.8906)

 

0.2321*** 
(5.8893)

 

0.2414*** 
(6.0994)

 

0.2367*** 
(6.5010)

 
G 0.2647*** 

(6.9755)
 

0.2272*** 
(5.3746)

 

0.2314*** 
(4.0545)

 

0.2284*** 
(5.8924)

 

22a
 

R 0.4598*** 
(13.3956)

 

0.4669*** 
(15.3871)

 

0.4523*** 
(13.8794)

 

0.4758*** 
(13.8889)

 
G 0.4589*** 

(13.4889)
 

0.4660*** 
(15.2226)

 

0.4505*** 
(14.0148)

 

0.4812*** 
(13.7421)

 

11b
 

R 0.9229*** 
(96.477)

 

0.9286*** 
(106.902)

 

0.9292*** 
(110.283)

 

0.9341*** 
(124.506)

 
G 0.9213*** 

(91.970)
 

0.9296*** 
(106.559)

 

0.9277*** 
(89.741)

 

0.9352*** 
(125.463)

 

22b
 

R 0.9006*** 
(87.067)

 

0.9092*** 
(95.571)

 

0.9180*** 
(94.528)

 

0.9067*** 
(82.0706)

 
G 0.9064*** 

(88.189) 
0.9096*** 
(95.767)

 

0.9180*** 
(95.379)

 

0.9048*** 
(79.7415)
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Table 3 
Mean equation estimates for state-dependent multi-factor models 

The table shows the estimates of the risk-return trade-off using the state-dependent multi-factor model 
in Equation 5. Two versions of the model are estimated: R refers to the restricted version of the model in 
Equation 5 where λ21,st = λ22,st = 0 (similar to Scruggs, 1998) and G to the General model where all 
parameters are freely estimated. The proxy for the excess market returns (rm,t) is the CRSP Value-
Weighted portfolio minus the risk-free rate. Each column illustrates the results from the estimation of the 
model using one of the choices for the (rb,t) alternative investment set. In model I the excess returns of the 
5-year US Government Bond is used.  In model II the excess returns of the 10-year US Government Bond 
is used. In model III the excess returns of the 20-year US Government Bond is used. In model IV the 
excess returns of an equally weighted portfolio containing these three bonds is used. The coefficients and 
corresponding t-statistics (in parenthesis) are shown for the full sample period (March 1953-June 2013). 
The t-statistics are computed using Bollerslev-Wooldridge standard errors ( *** , **  and * represents 
statistical significance at 1%, 5% and 10% levels). Panel A shows the estimations for the state st=1 which 
correspond to low volatility periods and Panel B shows the estimations for the state st=2 which 
correspond to high volatility periods. 

 

2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

Panel A. Low volatility state (st =1) 
 Model I Model II Model III Model IV 

10, 1ts
λ =

 

R 0.0103 
(1.5267) 

-0.0231* 
(-1.6875) 

0.0344*** 
(3.3647) 

-0.0114 
(-0.8301) 

G 0.0040 
(1.1357) 

0.0022 
(0.4796) 

0.0022 
(0.4709) 

0.0056 
(1.3789) 

11, 1tsλ =

 

R 9.5670*** 
(2.7671) 

15.9695*** 
 (4.7872) 

18.4561* 
(1.8612) 

5.3076** 
(2.3019) 

G 9.7538*** 
(2.7423) 

12.1115*** 
(2.1571) 

12.1225** 
(1.9830) 

11.0457** 
(2.4170) 

12, 1ts
λ =

 

R 5.0367 
(0.7751) 

4.3367*** 
(4.6199) 

12.2170*** 
(2.8454) 

6.6429** 
(2.3237) 

G 0.4954*** 
(2.4734) 

-0.8795 
(-1.1786) 

-0.8765 
(-1.0870) 

-0.4749 
(-0.3788) 

20, 1ts
λ =

 

R 0.0011*** 
(11.2717) 

0.0017* 
(1.7776) 

0.0015 
(1.1309) 

0.0021*** 
(2.6354) 

G -0.0006 
(-1.4039) 

-0.0003 
(0.3757) 

-0.0003 
(0.4019) 

-0.0007 
(-0.7458) 

21, 1tsλ =

    
G 0.2131*** 

(2.4831) 
0.2994 

(0.5783) 
0.3006 

(0.6380) 
1.7573 

(0.7743) 

22, 1ts
λ =

    
G 0.1442*** 

(3.0205) 
0.0663* 
(1.7225) 

0.0664* 
(1.8384) 

0.0922** 
(2.0885) 

Panel B. High volatility state (st =2) 

10, 2ts
λ =

 

R 0.0036** 
(2.1084) 

0.0048 
(1.3098) 

0.0024 
(0.6351) 

0.0029 
(0.7069) 

G -0.0349* 
(-1.8797) 

0.0119 
(1.3429) 

0.0191 
(1.2923) 

0.0093 
(1.1634) 

11, 2ts
λ =

 

R 3.5663 
(0.2264) 

-9.6434* 
(1.6910) 

-14.5513** 
(-2.1125) 

-2.1357** 
(-2.1588) 

G 5.8157 
(0.8648) 

-1.5298 
(-0.1531) 

-1.5737 
(-0.1829) 

-1.0780** 
(-1.9709) 

12, 2ts
λ =

 

R -1.4201 
(-0.9573) 

-2.6444*** 
(-5.5163) 

-9.1955*** 
(-2.7510) 

2.8581** 
(-2.3479) 

G -0.4033 
(-1.2127) 

2.9370 
(1.3179) 

2.9276* 
(1.6938) 

2.9347 
(0.6806) 

20, 2ts
λ =

 

R -0.0004*** 
(-3.1656) 

-0.0005 
(-1.0752) 

-0.0011** 
(-1.9850) 

-0.0006 
(-1.5629) 

G -0.0014 
(-0.6178) 

-0.0003 
(-0.1677) 

-0.0004 
(-0.1537) 

0.0013 
(0.6275) 

21, 2ts
λ =

    

G -0.4776** 
(-2.5848) 

-0.3581 
(-0.7942) 

-0.3587 
(-0.7379) 

-1.1286 
(-0.6595) 

22, 2ts
λ =    

G 0.0733 
(0.7167) 

-0.0039 
(-0.1157) 

0.0039 
(-0.1138) 

0.0007 
(0.0183) 
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Table 4 
Variance equation estimates for state-dependent multi-factor models 

The table shows the estimates of the variance equation of the state-dependent multi-factor model in 
Equation 6. These variance equations come from two different versions of the main model presented in 
equation 5: R refers to the restricted version of the model in Equation 5 where λ21,st = λ22,st = 0 (similar to 
Scruggs, 1998) and G to the General model where all parameters are freely estimated. The proxy for the 
excess market returns (rm,t) is the CRSP Value-Weighted portfolio minus the risk-free rate. Each column 
illustrates the results from the estimation of the model using one of the choices for the (rb,t) alternative 
investment set. In model I the excess returns of the 5-year US Government Bond is used.  In model II the 
excess returns of the 10-year US Government Bond is used. In model III the excess returns of the 20-year 
US Government Bond is used. In model IV the excess returns of an equally weighted portfolio containing 
these three bonds is used. Within each alternative investment we distinguish between state st=1 which 
correspond to low volatility periods and state st=2 which correspond to high volatility periods. Excess 
monthly returns are used in the estimation of the model. The coefficients and corresponding t-statistics (in 
parenthesis) are shown for the full sample period (March 1953-June 2013). The t-statistics are computed 
using Bollerslev-Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% 
and 10% levels). The last two rows of the table shows the estimates for the parameters of the transition 
probability matrix in equation 7. 
 

 

11, 11,

12, 22, 12, 22,

11, 21, 11, 21, 11, 21,

12, 22, 12, 22, 12, 22,

'2
, , , ,

, 2
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'
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1 1

0 0
t t

t

t t

st st

st st st st

st st st st st st

st st st st st st

m t s mb t s

t s

mb t s b t s

t t

c c

c c c c

a a a a b b

H

a a a a b b

σ σ
σ σ

ε ε− −

    
=   = +       

     
+     

     

11, 21,

12, 22,

'

1 1,2st st

st st

t t

b b
H for s

b b−

 
= 

 

   

 Model I Model II Model III Model IV 
  1ts =

 
2ts =

 
1ts =

 
2ts =

 
1ts =

 
2ts =

 
1ts =

 
2ts =

 

11c
 

R -0,0010***  
(-61.630) 

1,7228***  
(8,9911) 

-0,5371***  
(-8.7636) 

2,2911***  
(12,232) 

0.0025 
(0.0860) 

0.6885***  
(3.4195) 

0,0031 
(0.2803) 

2,2174***  
(7.3845) 

G 0.0011 
(0.5530) 

3.2867***  
(6.9591) 

0.0001 
(0.0396) 

1.6902 
(3.9268) 

-0.0001 
(-0.0131) 

1.6900***  
(3.5581) 

0.0002 
(0.0620) 

1.5366***  
(4.7093) 

12c
 

R 0,0000 
(0.0066) 

-0,0680***  
-(5,8563) 

0,0195 
(0.0006) 

-0,0831***  
(-11,248) 

-0.0003 
(-0.2108) 

-0.0973***  
(-2.7354) 

0,0000 
(-0.0006) 

-0,0174***  
(-7.8907) 

G 0.0000 
(-0.0054) 

-0.0540* 
(-1.8817) 

0.0000 
(0.0001) 

-0.0643 
(0.0359) 

0.0000 
(0.0001) 

-0.0642* 
(1.8560) 

0.0000 
(0.0010) 

-0.0056 
(0.0218) 

22c
 

R -0,0001 
(-0.1161) 

0,2606***  
(5,6229) 

-0,0319**  
(-2.2661) 

0,1361* 
(1,7949) 

-0.0009 
(-0.4217) 

-0.2516***  
(-3.1059) 

0,0002 
(0.1123) 

0,1204**  
(2.0302) 

G 0.0002 
(0.1434) 

0.4987***  
(4.6756) 

0.0000 
(0.0172) 

0.1186 
(1.5048) 

-0.0000 
(0.0058) 

0.1186 
(1.4597) 

0.0001 
(0.0256) 

-0.1102* 
(1.6514) 

11a
 

R 0,0492* 
(1.9031)) 

0,0129 
(0,9750) 

0,0002***  
(33.5008) 

0,0000* 
(1,9346) 

0.0060 
(1.5856) 

0.0053 
(1.4952) 

0,0001 
(1.4762) 

0,0001**  
(2.1763) 

G 
0.1879***  
(3.7328) 

0.2216***  
(4.0342) 

0.0554 
(1.3020) 

0.0082 
(0.5007) 

0.0555
*
 

(1.6871) 
0.0081 

(0.6502) 
0.0428 

(1.1991) 
0.0180 

(0.7784) 

22a
 

R 0,5786***  
(49.7512) 

0,1519***  
(25,4871) 

0,5367***  
(70.6927) 

0,0018***  
(4,0823) 

0.3485***  
(5.9286) 

0.3088***  
(5.5804) 

0,2128* 
(1.8658) 

0,1886***  
(2.7504) 

G 
0.3894***  
(0.0696) 

0.4548***  
(0.0753) 

0.5380 
(1.4783) 

0.0796 
(0.5685) 

0.5380
*
 

(1.8418) 
0.0799 

(0.7100) 
0.5191***  
(4.9893) 

0.2187***  
(3.2385) 

11b
 

R 0,8845***  
(38.7541) 

1,1407***  
(41,8484) 

0,8224***  
(39.3749) 

1,0607***  
(44,7155) 

0.8241***  
(27.4831) 

1.2325***  
(33.6105) 

0,7048***  
(28.791) 

1,0534***  
(37.856) 

G 0.8694***  
(14.4548) 

0.9312***  
(14.9593) 

0.8114***  
(17.4458) 

1.1237***  
(20.5306) 

0.8114***  
(16.9546) 

1.1237***  
(19.9531) 

0.7997***  
(20.9706) 

1.1499***  
(25.1493) 

22b
 

R 0,8318***  
(80.9501) 

1,0728***  
(87,6328) 

0,8245***  
(39.9644) 

1,0633***  
(45,3837) 

0.7878***  
(25.9462) 

1.1782***  
(31.7309) 

0,7077***  
(29.608) 

1,0576***  
(38.930) 

G 0.8744***  
(15.4474) 

0.9365***  
(15.9567) 

0.7887***  
(23.7954) 

1.0922***  
(28.0029) 

0.7887***  
(23.2738) 

1.0923***  
(27.3899) 

0.7689***  
(25.4467) 

1.1055***
 

(30.5161) 

p 
R 0.8058***  

(31.7236) 
0.8631***  
(35.3541) 

0.7637***  
(29.3734) 

0.8397***  
(23.0373) 

G 0.9176***  
(45.4736) 

0.8072***  
(16.7065) 

0.8061***  
(15.3766) 

0.7892***  
(18.8192) 

q 
R 0.7258***  

(14.6885) 
0.7820***  
(18.0196) 

0.5998***  
(12.2302) 

0.7860***  
(16.4037) 

G 0.7392***  
(12.976) 

0.7444***  
(11.5441) 

0.7443***  
(11.8855) 

0.7310***  
(15.0042) 
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Table 5.   
Mean equation estimates for SP500 using all multi-factor models 

Panel A of this table shows the estimates of the risk-return trade-off using the single-regime multi-
factor model in Equation 2 for the SP500 index as an alternative for the market portfolio. Panel B shows 
the estimates of the risk-return trade-off using the regime-switching multi-factor model in Equation 5 for 
the SP500 index as an alternative for the market portfolio. We show the results when we use the equally-
weighted bond portfolio as the alternative investment set (rb,t,st). Two versions of the model are estimated: 
R refers to the Restricted version of the model in Equations 2 and 5 where λ21,st = λ22,st = 0 (similar to 
Scruggs, 1998) and G to the General model where all parameters are freely estimated.  Excess monthly 
returns are used in the estimation of the model. The coefficients and corresponding t-statistics (in 
parenthesis) are shown for the full sample period (March 1953-June 2013). The t-statistics are computed 
using Bollerslev-Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% 
and 10% levels).  
 

 2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

Panel A. Single-Regime 
model 

Panel B. Regime-Switching model 

Single-Regime Low volatility state (st =1) High volatility state (st =2) 

10λ
 

R -0.0091 
(-1.1900) 

10, 1ts
λ =  

R -0.0053 
(-0.1212) 

10, 2ts
λ =  

R -0.0133 
(-0.8295) 

G -0.0130 
(1.4140) G 0.0022 

(0.4911) G 0.0119 
(1.3024) 

11λ
 

R 6.3818 
(1.5054) 

11, 1tsλ =  

R 18.3502** * 
(7.0532) 

11, 2ts
λ =  

R -14.1840** * 
(-10.5751) 

G 8.7912* 
(1.7107) 

G 12.0803**  
(2.1870) 

G -1.3256 
(-0.1340) 

12λ
 

R 0.3822 
(0.0434) 

12, 1ts
λ =  

R -4.5477** * 
(-9.3330) 

12, 2ts
λ =  

R 5.8620** * 
(6.4722 

G 2.2695 
(0.2478) G -0.8841 

(-0.8525) G 2.9801 
(1.1734) 

20λ
 

R 0.0003 
(0.7771) 

20, 1ts
λ =  

R -0.0519 
(-1.2481) 

20, 2ts
λ =  

R 0.0025**  
(2.2982) 

G 0.0001 
(0.2144) G -0.0003 

(-0.4379) G -0.0003 
(-0.1524) 

21λ
    

G 0.8167* 
(1.8533) 

21, 1tsλ =

    
G 0.2910 

(0.6721) 21, 2ts
λ =     G 

-0.3516 
(-0.8434) 

22λ
    

G 0.4861**  
(2.5831) 

22, 1ts
λ =

    
G 0.0660**  

(2.0519) 22, 2ts
λ =     G 

-0.0040 
(-0.1220) 
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Table 6.  
Mean equation estimates for multi-factor models (single regime and state-dependent) using the databases 
in Scruggs (1998) and Scruggs and Glabadanidis (2003) 
The table shows the estimates of the risk-return trade-off using the independent multi-factor model in 
Equation 2 (panel A) and the state-dependent multi-factor model in Equation 5 (panels B and C). Two 
versions of these model are estimated: R refers to the Restricted version of the model in Equations 2 and 5 
where λ21,(st) = λ22,(st) = 0 (Scruggs, 1998) and G refers to the General model where all parameters are 
freely estimated.  Excess monthly returns are used in the estimation of the model. The proxy for the 
excess market returns (rm,t) in Scruggs (1998) is the CRSP Value-Weighted portfolio of NYSE-AMEX 
stocks minus the 1-month T-bill yield from March 1950 to December 1994 while in Scruggs and 
Glabadanidis (2003) the sample period is from January 1953 to December 1997. The choice for the (rb,t) 
alternative investment is the Ibboston Associates long-term U.S. Treasury bond total return index for the 
corresponding sample periods. The coefficients and corresponding t-statistics (in parenthesis) are shown 
for the full sample period (March 1950 to December 1994 in Scruggs (1998) and January 1953 to 
December 1997 in Scruggs and Glabadanidis (2003)). The t-statistics are computed using Bollerslev-
Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% and 10% levels). 
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λ λ σ λ σ ε

= + + +

= + + +
 

Panel A. Linear model 

 10λ
 11λ

 12λ
 20λ

 21λ
 22λ

 

Scruggs 
(1998)

 

R -0.0031 
(-0.4818) 

5.3664 
(1.3292) 

-2.3777 
(-0.5064) 

-0.0005 
(-0.1166) 

- - 

G -0.0039 
(-0.6214) 

6.3774 
(1.6151) 

-0.8979 
(-0.1936) 

-0.0004 
(-0.8502) 

3.4492 
(0.8792) 

-0.0102 
(1.4094) 

Scruggs and 
Glabad 
(2003)

 

R 0.0049 
(1.0071) 

3.0546 
(0.9958) 

1.2023 
(0.2661) 

0.0002 
(0.4674) 

- - 

G -0.0010 
(-0.1968) 

4.7449 
(1.4200) 

-0.2603 
(-0.0583) 

-0.0001 
(-0.2862) 

5.2473 
(1.4286) 

1.7210 
(0.9746) 
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, , 10, 11, , , 12, , , , ,
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t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +
 

Panel B. Low volatility state (st =1) 

 10, 2ts
λ =  11, 2ts

λ =  12, 2ts
λ =  20, 2ts

λ =  21, 2ts
λ =  22, 2ts

λ =  

Scruggs 
(1998)

 

R 0.0042 
(1.0890) 

12.9126***  
(2.8804) 

-0.4506***  
(-2.8024) 

-0.0004 
(-0.7623) 

- - 

G -0.0037 
(-0.8085) 

20.6704***  
(3.5105) 

-0.4743**  
(-2.6360) 

0.0004 
(1.1624) 

0.2251* 
(1.7996) 

-0.0200 
(-0.6630) 

Scruggs and 
Glabad 
(2003)

 

R 0,0064 
(1.7984) 

10.7221***  
(2.2399) 

-0.4187***  
(-2.6746) 

-0.0001 
(-0.2364) 

- - 

G 0.0055* 
(1.8425) 

17.1605***  
(3.4377) 

-0.5750**  
(-2.5650) 

-0.0002 
(-0.3057) 

0.4077**  
(1.9683) 

-0.0565 
(-1.1828) 

 

 

2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +
 

Panel C. High volatility state (st =2) 

 10, 2ts
λ =  11, 2ts

λ =  12, 2ts
λ =  20, 2ts

λ =  21, 2ts
λ =  22, 2ts

λ =  

Scruggs 
(1998)

 

R 0.0103 
(1.3912) 

-14.1498***  
(-2.7193) 

0.5594***  
(2.8069) 

0.0002 
(0.1602) 

- - 

G 0.0029***  
(2.8503) 

-26.8595***  
(-3.6500) 

0.6760***  
(2.9173) 

-0.0005***  
(-3.9145) 

-0.3050**  
(-1.9867) 

0.1134**  
(2.3156) 

Scruggs and 
Glabad 
(2003)

 

R 0.0110 
(1.4134) 

-15.0876**  
(-2.5637) 

0.5437***  
(2.7185) 

0.0003 
(0.2498) 

- - 

G 0.0149* 
(1.9581) 

-18.5588***  
(-2.7977) 

0.6116**  
(2.6324) 

-0.0008 
(-0.4956) 

-0.1738 
(-1.2269) 

0.0572 
(1.2168) 
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Table 7. 
Mean equation estimates for linear models controlling for high-volatility observations 
The table shows the estimates of the risk-return trade-off using the single-regime multi-factor model in 
Equation 2 if we control for the high volatility observations with a dummy variable Di (taking value 1 for 
high volatility states) for each series using equations 8-11. Two versions of the model are estimated: R 
refers to the restricted version of the model in Equation 2 where λ21 = λ22 = 0 (Scruggs, 1998) and G to the 
General model where all parameters are freely estimated.  Excess monthly returns are used in the 
estimation of the model and the sample periods follows previous analysis. We estimate the model for 
several alternatives of the market portfolio. Each column illustrates the results from the estimation of the 
model using one of these alternatives as the excess market returns (rm,t): CRSP Value-Weighted portfolio, 
the SP500 index and the datasets used in Scruggs (1998) and Scruggs and Glabadanidis (2003). In the 
first 2 columns we show the results when we use the equally-weighted bond portfolio as the alternative 
investment set (rb,t). In the other 2 columns the alternative investment set is the one used in the 
corresponding paper. The t-statistics are computed using Bollerslev-Wooldridge standard errors ( *** , **  
and * represents statistical significance at 1%, 5% and 10% levels). 
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 CRSP SP500 Scruggs  Scruggs and Glab 

10λ
 

R -0.0142 
(-1.5622) 

-0.0437***  
(-4.1424) 

-0.2499 
(-0.3679) 

0.4716 
(0.9311) 

G -0.0152* 
(-1.7542) 

-0.0334***  
(-5.3779) 

-0.2949 
(-0.4250) 

0.3439 
(0.6459) 

11λ
 

R 23.1338***  
(3.3699) 

41.9584***  
(5.1381) 

13.1768**  
(2.4876) 

7.7647**  
(1.9737) 

G 25.1016***  
(3.7785) 

34.6001***  
(9.2975) 

13.6446**  
(2.4966) 

9.1683**  
(2.2090) 

11,dλ
 

R -25.4618***  
(-8.6418) 

-44.2197***  
(-12.1802) 

-33.6692***  
(-7.2032) 

-32.7354***  
(-7.6828) 

G -27.0210***  
(-9.5708) 

-43.9572***  
(-12.7881) 

-33.7009***  
(-7.3179) 

-32.8019***  
(-7.4893) 

12λ
 

R -25.6111 
(-1.6164) 

6.6709 
(0.3813) 

-23.8281***  
(-3.3738) 

-22.8791***  
(-3.4201) 

G 3.2608 
(0.2320) 

6.4367 
(0.4881) 

-20.8688** * 
(-20.9354) 

-20.1689***  
(-2.9303) 

12,dλ
 

R 53.4563**  
(2.4028) 

3.5437 
(0.1075) 

71.0805***  
(4.3543) 

74.3805***  
(5.1215) 

G 18.8511 
(0.9687) 

7.7326 
(0.2849) 

70.1197***  
(4.3739) 

74.5994***  
(4.8167) 

20λ
 

R 0.0002 
(0.4852) 

0.0001 
(0.2954) 

0.0009 
(0.0192) 

0.0137 
(0.2770) 

G 0.0004 
(0.8718) 

0.0004 
(0.0868) 

0.0472 
(0.9272) 

0.0280 
(0.5018) 

21λ
   

G 2.0084 
(0.3132) 

12.4749* 
(1.8751) 

0.4549 
(0.1074) 

5.4795 
(1.2761) 

22λ
   

G 5.4200**  
(2.3794) 

4.7549**  
(2.5954) 

3.0327* 
(1.7532) 

1.6108 
(0.8732) 
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Figure 1. Monthly excess returns of the selected portfolios  
The figure plots the excess monthly returns on the series selected for the market portfolio (rm,t) and the 
alternative investment sets (rb,t). The proxy for the market portfolio is the CRSP value-weighted NYSE-
AMEX portfolio and the risk-free asset is the yield on the one-month Treasury bill. The proxies for the 
alternative opportunity set are the total returns (computed as Morningstar ®) for the 5,10 and 20 years 
constant maturity US Government Bonds and an equally weighted portfolio containing these three bonds. 
The sample period includes observations from 1953 to 2013 and the monthly returns and yields are 
expressed as decimals. 
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Figure 2. Conditional covariances between excess market returns and the intertemporal component  
The figure plots the conditional covariances (σmb,t) from the multifactor model in Equation 6. In these 
plots we use the CRSP value-weighted NYSE-AMEX portfolio for the excess market returns (rm,t) and the 
total returns (computed as Morningstar ®) for the 5,10, 20 years constant maturity US Government Bonds 
and an equally weighted portfolio containing these three bonds as alternative investment sets (rb,t). The 
sample period includes observations from 1953 to 2013 and the monthly conditional covariances are 
expressed as decimals. 
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Figure 3. Filtered probabilities for low volatility states  
This figure plots the probability of being in a low probability state [P(st=1|Ωt;θ) ] for the state-dependent 
multifactor model according to Equation (10). In these plots we use the CRSP value-weighted NYSE-
AMEX portfolio for the excess market returns (rm,t) and the total returns (computed as Morningstar ®) for 
the 5,10, 20 years constant maturity US Government Bonds and an equally weighted portfolio containing 
the three previous bonds as alternative investment sets (rb,t). Shaded areas correspond to NBER 
recessionary periods. The sample period includes observations from 1953 to 2013. 
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Figure 4.A. Market risk premium for the linear multi-factor model  
This figure plots the estimated risk premium for different portfolios using the linear multi-factor model in 
equation 2. The green line represents SP500 and the red line is the premium associated with the CRSP 
Value Weighted Index Portfolio. The sample period covers observations from 1953 to 2013 and the 
monthly risk premiums are expressed as decimals. 

 

 
Figure 4.B Market risk premium comparison between linear and non-linear models  
This figure plots for each  market portfolio (CRSP and SP500) the estimated risk premiums using the 
linear multi-factor model in equation 2 (red line) and using the state-dependent multi-factor model in 
equation 5 (blue line). The sample period covers observations from 1953 to 2013 and the monthly risk 
premiums are expressed as decimals.

 

 
  
 

 


